Fluorescent Phase-Out Continues

The big fluorescent news last week was that Minnesota has become the ninth state to pass a phase out of fluorescent lamps (the others are California, Colorado, Hawaii, Maine, Oregon, Rhode Island, Vermont, and Washington). Minnesota’s timeline is aggressive – screw-based compact fluorescent lamps will be banned from sale six months from now, starting on January 1, 2025.  Other fluorescent and mercury vapor lamps will be banned from sale beginning January 1, 2026.

The Minnesota House of Representatives has an information sheet about the new law here.  What’s interesting is that the first topic is about reducing the hazard of exposure to mercury, not increasing energy efficiency.  It’s not wrong, just curious.  The information sheet then goes on to address reduced CO2 emissions, electricity savings, and reduced power plant mercury emissions.

Illinois also has fluorescent banning legislation working through the legislature, so by the end of the year we may see 10, 11 or more states that are phasing out fluorescents.

Healing Light at AIA New York

It’s been a while since I’ve posted anything because I’ve been working on a new book.  More on that as we get closer to the publication date.  Meanwhile, I’ve been asked (somewhat at the last minute) to speak on Monday June 3rd at an upcoming AIA New York event called Healing Light: The Biological and Social Effects of Lighting.  The presentation will be an introduction to color temperature and color rendering and is primarily targeted at architects and interior designers who are new to lighting.  Registration is free to AIA members and students, and only $10 for the general public.

147 Countries free to Eliminate Fluorescent Lamps by 2027

The Minamata Convention on Mercury, a program of the United Nations with delegates from at least 150 countries, is dedicated to improving global health by phasing out the use of mercury in manufacturing, banning new mercury mines, and limiting mercury emissions.   Last month, 147 countries (out of a global total of 195) agreed to phase out florescent lighting globally and completely by 2027.

According to the appliance efficiency non-profit, CLASP, the phase out will, between 2027 and 2050:

  • Avoid 2.7 gigatons of CO2 emissions,
  • Eliminate 158 tons of mercury pollution, both from the light bulbs themselves and from avoided mercury emissions from coal-fired power plants,
  • Save US$1.13 trillion on electricity bills.

Early fluorescent lamps were being tested by Thomas Edison and Nicola Tesla in the 1890s, but it took several advances before they were ready for commercial use around the 1940s.  According to the Department of Energy, by 1951 more light was being produced in the US by fluorescent lamps than by incandescent lamps.  But, this always came at a cost.  Fluorescent lamps work by passing an electric current through gaseous mercury, which emits ultraviolet light, which in turn is converted to visible light by the phosphors that line the fluorescent tube. When discarded (and eventually broken) the mercury would enter the environment, which is why the EPA began encouraging fluorescent lamp recycling and mercury recovery in the mid-2000s.  Mercury is a neurotoxin, and symptoms of prolonged and/or acute exposures include:

  • Tremors
  • Emotional changes (such as mood swings, irritability, nervousness, excessive shyness)
  • Insomnia
  • Neuromuscular changes (such as weakness, muscle atrophy, twitching)
  • Poor performance on tests of mental function

So, after around 70 years as the dominant commercial light source, and 10 years of decline after the introduction of LEDs, the fluorescent lamp has joined kerosene, whale oil, and others as an historical or legacy light source.

Upcoming TM-30 Presentations

I’ll be giving two presentations in the next month.

On September 8th I’ll be giving an online presentation to the Raleigh Section of the IES.  Simplifying, Understanding, and Applying IES TM-30 will be from 12:30 to 1:30 eastern.  I’m going to set aside the color science that normally opens a TM-30 presentation to make more time for Annex E and the PVF specification system.  Admission is free.  Register here: https://www.eventbrite.com/e/simplifying-understanding-and-applying-ies-tm-30-tickets-695339287527?aff=oddtdtcreator

On September 19th and 20th Tony Esposito and I will be presenting Designing with TM-30, our third TM-30 presentation at ArchLIGHT Summit in Dallas, TX.  This 90 minute presentation starts with Tony talking about color science as it applies to TM-30, then I discuss integrating TM-30 into the lighting design workflow, and we wrap up with a 30 minute demonstration of TM-30s capabilities with the best mockup I’ve ever seen (see below for  Tony’s photos of last year’s mockup).  Register here: https://archlightsummit2023.sched.com/

TM-30 demonstration showing how varying the SPD, even within a single CCT, affects color appearance.

TM-30 Update: Challenges and strategies for working with SSL manufacturers – LD+A

I have written a lot about TM-30 from the specifier’s viewpoint – how TM-30 is better than CRI, explanations of the various TM-30 measures. why TM-30 data and reports are so important, how to get TM-30 data or reports, how to use TM-30, etc.

This month’s LD+A has a great article about TM-30 from the manufacturer’s viewpoint that addresses issues such as – why TM-30 reports for every LED option aren’t always available, why some manufacturers are reluctant to prepare TM-30 reports, strategies specifiers can use to deal with these issues, and more.  It’s a very useful article.  Give it a read at TM-30 Update: Challenges and strategies for working with SSL manufacturers – Illuminating Engineering Society %

New Energy Efficiency Rules Ban Incandescent Light Bulbs: What to Know – The New York Times

We’ve known for a while that the day was coming, and now it’s here.  Effective yesterday retailers will no longer be permitted to sell most incandescent lamps (which includes halogen lamps) in the U.S.  There are some exceptions for things like bug lights, but not many.

Replacement lamps for sale now must produce at least 45 lumens per watt, which is easily achieved by LEDs but impossible with incandescents.

The Department of Energy estimates that consumers will save about $3 billion per year. ( Of course, this assumes they buy quality lamps that don’t fail within a year, which is a real problem with off brand, and even some name brand, lamps.)

Source: New Energy Efficiency Rules Ban Incandescent Light Bulbs: What to Know – The New York Times

Back to Basics with ALA

On August 16th I’ll be giving a presentation for the American Lighting Association (ALA) called Back to Basics: Fixtures, Spacing, and Techniques.  Here’s their description.

This course will provide an introductory level overview of common fixture types and how they should be spaced/installed. Downlights, wall washers, wall grazers, under shelf, track lighting, LED fixtures, and small size LED fixtures. Learn with the use of drawings/renderings of proper spacing ratios and angle of focus as well as other critical information. This is a can’t miss information for lighting designers, sales professionals, and installers.

The presentation is online at 12 noon, eastern.  If you’re interested you can sign up here.

AI and the Internet Need to Learn Color Rendering

Recently a colleague of mine from the IES Color Committee asked of one of the new AIs “Tell me about color rendering.”  If we assume that the answer was formulated based on information about color rendering that is available on the internet we have a problem because the answer the AI returned was almost completely wrong.  That strongly suggests that most individuals and manufacturers posting information about color rendering don’t fully understand color rendering and are perpetuating outdated or incorrect information.  Here’s what the AI had to say, and what’s wrong with it’s response.

Color rendering is a measure of how well a light source reveals the true colors of objects. (1) A light source with a high CRI (Color Rendering Index) will show objects in their natural colors (2), while a light source with a low CRI will make objects look dull or washed out (3).  The CRI is a scale from 0 to 100 (4), with 100 being the perfect score (5).  A light source with a CRI of 100 will show objects in their true colors (1) while a light source with a CRI if 0 will make all objects look the same color (6).

The CRI (7) is important for applications where it is important to see objects in their true colors (1), such as art galleries, hospitals, and retail stores (8).  It is also important for applications where it is important to see subtle variations in color such as fashion design and photography (9).

There are a few things that can affect the CRI of a light source (10).  The type of light source (incandescent, fluorescent, LED, etc.) will affect the CRI (11).  The color temperature of the light source will also affect the CRI (12).  Light sources with a higher color temperature will have a higher CRI (12).

The CRI (7) is a valuable tool for choosing the right light source for your application.  By understanding the CRI, you can choose a light source that will show your objects in their true colors (1) and help you achiever the desired look and feel for your space.

  1. Objects don’t have “true” colors, they have apparent colors.  The color of an object is determined by the spectrum of light striking it, it’s reflective properties, and the resulting light directed toward the observer.  An object’s reflective properties don’t change, but the spectrum of light changes every time the light source changes.  Changing the spectrum may, therefore, change the color appearance of the object, hence apparent color.
  2. While there is a correlation between fidelity and naturalness, they are not the same thing.  CRI measures fidelity, i.e. how well a given light source matches the color rendering of a defined reference light source.
  3. One of the problems with single measure metrics like CRI is that there’s a lot of information that isn’t conveyed.  As CRI values drop, the only thing conveyed is that the match to the reference light source is worse.  A worse match, however, doesn’t mean colors are made dull. It could be they are increased in saturation since both deviations from the reference are equally penalized.  That’s the advantage of TM-30.  As Rf decreases we can see why by looking at Rg and some of the other 147 measures.
  4. CRI can have negative values.  TM-30 Rf is calculated so that 0 is the lowest value.
  5. 100 is the highest value.  It’s dangerous to call it “perfect” though as that implies that high fidelity is the only color rendering goal, which it isn’t.  TM-30 provides information for the color rendering goals of preference and vividness, and may include more in the future.
  6. A CRI of 0 will certainly make nearly all colors look terrible and very similar, but not all the same.
  7. CRI isn’t a proper noun, and shouldn’t be preceded by “the”.
  8. There are strong arguments for emphasizing preference over fidelity in many applications, including retail.  Again, fidelity isn’t the only color rendering goal, although it is the only one CRI measures.
  9. Research shows that high fidelity isn’t necessarily the best spectrum for detecting color difference.  Additional research is needed, but the IES may eventually add a color difference metric to TM-30.
  10. Only one thing affects CRI value – the spectrum of the light source.
  11. This is true because different light producing technologies have similar quirks in their spectra.  Those similarities can lead us to blanket statements such as “all fluorescents are green” which are not true for all products.  Again, the individual light source’s spectrum determines everything.
  12. A common misconception, but not true at all.  Not in the slightest. CCT and CRI are separate metrics.