IoT Lighting? No Thanks.

The current global cyber-attack, combined with last year’s “denial of service attack has me thinking about the lighting industry and IoT.

It was ironic that last year’s attack happened just days before the IES annual conference, at which IoT lighting was touted as the next big thing that everyone had to adopt or be left behind. You may recall that one aspect of that attack was that hackers recruited IoT devices like thermostats and smoke detectors. Many designers may think, “Well, sure, homeowners don’t have good security, but that wouldn’t happen to one of my corporate clients.” The current attack shows the flaw in that thinking. New tools have allowed hackers access to supposedly secure networks, and not all networks that should be secure (such as Britain’s NHS) actually are.

The question, then, is, “Why should my lighting system use IoT?” I’ve asked several friends in lighting design firms large and small and the answers I’ve received are revealing. Almost no one has a client who is asking for this. (I’ve had exactly one client who wanted the lighting system connected to the corporate LAN.) Do they want lighting systems connected to their BMS? If the client is knowledgeable and the building is large, yes, although today’s lighting systems have so many programming options we don’t need the BMS to control the lighting system. Do they want lighting systems to use Wi-Fi so that users can adjust the lights from phones and pads? Not very often. “Why would I want to give that many people authorization to change the lighting?” is the question asked, and rightly so. Do they want light fixtures with IP addresses and built-in Wi-Fi, Li-Fi, daylight sensors, occupancy sensors, temperature sensors, humidity sensors, and software that tracks shoppers or monitors space usage? “How much will that cost?” is the usual first question, followed by a strong “No.”

If we designers don’t see an artistic or operational advantage to these systems, and if our clients don’t see an advantage and aren’t asking for these systems, why all the noise about them? The answer, of course, isn’t better lighting design or increased energy efficiency, it’s money. Companies like Cisco see expanded profits from embedding Cisco sensors in every light fixture in a building, connecting all of those fixtures to Cisco POE switches and perhaps controlling the fixtures and sensors with Cisco software. Fixture manufacturers, always looking for a way to differentiate their products, jump on board. Marketing departments create hype, magazines and web sites need material, and voila! the next “must have” lighting system feature.

Who’s providing network security? The corporate IT department, I guess. Are the lighting systems vulnerable to hacking? The current and recent attacks tell us the answer is, “Yes.” Are manufacturers of IoT devices investing in security? Not really. They see it as the responsibility of someone upstream. Would anyone want a lighting system that is vulnerable to being turned off in an emergency, or reprogrammed by someone just to see if they can do it? No.

Some of the lighting systems I am designing are quite complex involving hundreds of fixtures with hundreds of addresses, multiple control protocols, and multiple points of control including touchscreens and Wi-Fi devices. One thing no one has to worry about, though, is high-jacking or corruption of the system. Each system stands alone. Software updates, if they are ever needed, are downloaded and installed via a USB key. Anyone wanting access to the system has to be within Wi-Fi range and has to hack the network. What would they get? Access to a single lighting system. There’s almost no reward and therefore there’s almost no incentive. Call me a Luddite if you like, but for now I’m going to stick to designing secure, flexible systems that provide my clients with only the features that they want at a price they are willing to pay. I’m sure that the pressure to “innovate” will eventually lead me to using these IoT systems. But for security’s sake I’m going to resist for as long as I can.

Lighting For Plant Health

I have a current project with a green wall, aka living wall, and other greenery in the space. I’ve been given conflicting information about the lighting requirements I need to meet are and how to measure them, so I did some research. This isn’t definitive, but here’s what I’ve found.

First of all, the measurement units that we’re all familiar with don’t apply to horticulture because the average plant’s response to light is very different from that of the human visual system. We know that the human eye response curve is V(λ) (pronounced vee lambda) which is shown in Figure 1. Our response to electromagnetic energy falls between 380 and 770 nm, with a peak response at 555 nm. In order to measure light the way the human visual system perceived it, V(λ) is folded into the definition of the lumen, the footcandle, etc.

Figure 1 V(λ)

Plants, however, have a response curve called the photosynthesis action spectrum, shown in Figure 2. The wavelengths of light that are absorbed and used by plants are below 520 nm and above 610 nm [i], which roughly equates to the blue and red range of the visible spectrum. Plants need a great deal of red light, a far amount of blue light, and little or no green light.

photosynthetically active spectrum

Figure 2 Average photosynthesis action spectrum of chlorophyll [ii]

So, we can’t talk about the amount of light delivered to plants in a useful way if we’re using lumens and footcandles. The measurement of light for plant health is Photosynthetically Active Radiation (PAR) [iii]. There are PAR calibrated light meters, and digital tools to convert lux/footcandle readings to PAR. Other common measurements are also not relevant to horticulture.

  • Color temperature is a numerical indication of the warmth or coolness of white light, but warmth or coolness are aesthetic criteria and are not relevant in light for plant health.
  • CRI is an indicator of how well a light source allows us to see colors when compared to a reference light source. The response of the human visual system to light is built-in to the CRI calculation. Again, for plant health we are not concerned with seeing the colors of the plants so this metric is not relevant.


What kind of light should we provide? Incandescent light has an appropriate balance of red and blue light for plant health, as shown in Figure 3. The power consumption will be high. Fortunately, power consumed by the lighting for plant health is exempt from the energy conservation codes. However, with their short life and high power consumption incandescents are, overall, a poor choice.

Incandescent SPD

Figure 3 SPD for incandescent light of 2800 K, 3000 K, and 3200 K [iv]

High color temperature metal halide lamps have been the horticulture light source of choice for a long time because their SPD provides an appropriate balance of red and blue light (Figure 4). While metal halide lamps are being replaced by LEDs in many applications, I expect they will be available for at least the next decade. For my project, these fixtures would only to be used during the green wall’s growth period in the morning before the space opens to the public. A second set of fixtures with warmer light will be used when the space is open so that I could light the wall in a way that is in balance with the rest of the space during operating hours.

Metal Halide SPD

Figure 4 SPD for a 4200 K metal halide [v]

One of the exciting features of LEDs is that they permit fine-tuning of the emitted spectrum. With LEDs it is possible to create a light source that closely follows the photosynthesis action spectra. This has been shown to “improve factors such as yield, flavor, color, plant growth, and flowering as well as pest and pathogen management and control.”[[vi] The impact has been studied, and results so far have been positive, for leaf lettuce [vii], cucumbers [viii], and tomatoes [ix], among others. At least one study has noted, however, has “concluded that the response of plants to the applied light is individual and depends on the species,” [x]

Therefore, an alternative to metal halide fixtures is multi-colored LED fixtures. Since multi-colored LED fixtures allow users to control the brightness of each color individually one could opt for a fixture with a Red, Blue, White (RBW), a Red, Red, Blue, White (RRBW), or a Red, Blue, Blue, White (RBBW) set of LEDs. This would permit one fixture to provide light for health and accent light. One possible result of a RBW fixture is shown in Figure 5. This is a much better match to the photosynthesis action spectra than incandescent, metal halide, or white LEDs.

Figure 5 Possible RBW LED produced SPD

For the time being, the people responsible for the greenery have asked me to stay with the tried and true metal halide lamps.  In the near future, as metal halide lamps become rarer, and as LEDs become more common in horticulture, I expect we’ll be changing over to LEDs.



[i] Yingchao Xu, Yongxiao Chang, Guanyu Chen, Hongyi Lin, The Research On LED Supplementary Lighting System For Plants, Optik – International Journal for Light and Electron Optics, Volume 127, Issue 18, September 2016, Pages 7193-7201, ISSN 0030-4026,

[ii] The Science of Food Production,

[iii] Torres, Ariana P., Lopez, Roberto G., Measuring Daily Light Integral in a Greenhouse, Department of Horticulture and Landscape Architecture, Purdue University,

[iv] Livingston, Jason, Designing Light: The Art, Science, and Practice of Architectural Lighting, Hoboken: John Wiley and Sons, 2014.

[v] TM-30-15 Advanced Calculator, Illuminating Engineering Society, New York: Illuminating Engineering Society, 2015.

[vi] Davis, Philip A. and Burns, Claire, Photobiology In Protected Horticulture, Food and Energy Security 2016: 5(4): 223-238.

[vii] Filippos Bantis, Theoharis Ouzounis, Kalliopi Radoglou, Artificial LED Lighting Enhances Growth Characteristics And Total Phenolic Content Of Ocimum Basilicum, But Variably Affects Transplant success, Scientia Horticulturae, Volume 198, 26 January 2016, Pages 277-283, ISSN 0304-4238,

[viii] Brazaityte, A.,,  The Effect Of Light-Emitting Diodes Lighting On Cucumber Transplants And After-Effect On Yield, Zemdirbyste, Volume 96, Issue 3, 2009, Pages 102-118. (Login Required)

[ix] Brazaityte, A., et. al., The Effect Of Light-Emitting Diodes Lighting On The Growth Of Tomato Transplants, Zemdirbyste, Volume 97, Issue 2, 2010, Pages 89-98, (Login Required)

[x] Fra̧szczak, B., et. al., Growth Rate Of Sweet Basil And Lemon Balm Plants Grown Under Fluorescent Lamps And Led Modules, Acta Scientiarum Polonorum, Hortorum Cultus, Volume 13, Issue 2, 2014, Pages 3-13, (Login Required)

With LEDs, Knowledge is Power

I’ve been hired to review an architect’s lighting design and then design an appropriate control system. The fixtures selected are all LED products by a manufacturer that falls into the high-end residential/economy commercial range of quality and price. The cut sheets are extremely frustrating. After nearly a decade of LED lighting, and with all of the progress the industry has made in setting standards so that designers and specifiers know what they’re getting, this manufacturer still tells us nothing. What basic information is missing?

 Lamp life. The only information even remotely connected to lamp life is the statement that the fixture is covered under a five-year warranty. There’s nothing else. Not a word. How much light, compared to initial output, can we expect at that five-year mark?  We have no idea.

LEDs do not fail like other lamps do.  They gradually dim as they age.  At what point is the light output so low that we’d say the lamp is no longer useful?  Right now the answer is when the light output has fallen to 70% of the initial output (often referred to as L70), although many designers prefer to use 80% of initial output (referred to as L80).  This is calculated using a procedure developed by the IES and designated as LM-80 (details are here and here).  What we want, at a minimum, is the IES LM-80 calculation of lamp life to 70% of initial output. L80 data would be even better.

 Warranty. The warranty is not on the manufacturer’s web site so, although we’re told that it is good for five years, we have no information about what is covered and what is excluded.

 LED manufacturer. With all other lamp types the designer chooses the exact lamp for the project. Criteria such as initial lumen output, mean lumen output, lamp life, color temperature, CRI, and the manufacturer’s reputation for quality are all valid considerations. We have standards that allow designers to make valid comparisons between LED products, too, but we can do that only if that information is generated and shared. I suspect that this fixture manufacturer uses LEDs from a several manufacturers based on the best price available, and that the performance of those LEDs varies widely.

 Color consistency. The cut sheet says that the standard applied to their LED selection is, “minimum 3-step color binning.” We are left to infer that means three-step MacAdam Ellipses.  A one-step MacAdam Ellipse describes a region on a chromaticity diagram or color space where the edges of the ellipse represent a just noticeable difference from the color at the center (additional information on MacAdam Ellipses is here and here).  The data is usually plotted on the CIE 1931 (x, y) chromaticity diagram.  The diagram below shows 10-step MacAdam Ellipses.

"CIExy1931 MacAdam". Licensed under CC BY-SA 3.0 via Wikimedia Commons -
“CIExy1931 MacAdam”. Licensed under CC BY-SA 3.0 via Wikimedia Commons –


The color variation within a three-step ellipse would be noticeable to over 99% of the population.  Worse, though, is that a three-step ellipse is the minimum, not the maximum. Knowing this, the designer should have no expectation of color consistency from one fixture to another.

 Photometrics. The cut sheet contains no information about the optical performance of the fixture. IES files are available, but it’s very difficult to look at the array of numbers and understand performance, which is why the good manufacturers include photometric information on their documentation, including candlepower distribution curves and CU tables.

Part of my review will be pointing out the lack of data about the specified fixtures and recommending several alternates by manufacturers who provide the information necessary to evaluate their products.

Fixture Cost Frustration

One of my clients has expressed frustration with the caveats I place at the end of my lighting fixture budget. Why can’t I give the client a simple budget estimate? The answer is that fixture manufacturers don’t have a manufacturer’s suggested retail price (MSRP) for their products, which is something we’ve all come to expect for products ranging from potato chips to cars. We all know that things we want to buy have an MSRP or list price and it’s up to the seller to decide whether or not to sell at a lower price.

However, with lighting equipment the sales representative and the manufacturer collaborate to establish pricing for each project (see chapter 9). Larger projects with more luminaires will usually pay less per luminaire. This can be frustrating for everyone. It’s hard to develop a reliable fixture cost database when fixture costs are variable.

Another issue with pricing from the sales rep is that it is usually dealer net, distributor net, or DN pricing. This means that the luminaire price the sales rep gives to the designer is the price that the electrical distributor will pay the manufacturer. It does not include the electrical distributor’s markup for overhead and profit, nor does it include possible markups by the electrical contractor and/or the general contractor.   It is up to the lighting designer to estimate the total markup(s) as well as taxes, shipping and such, and add that amount to the projected lighting fixture budget, but designers have no direct knowledge of what markup these firms will add, nor do we have any control over their markups. The result is that I wind up footnoting my budget with notes like markup percentages are estimated, pricing is based on cost estimates provided by sales representative, and pricing is based on projects of similar size and scope.

Finally, as I explained here, the fixtures that I specify may not be purchased for the project. Once substitutions enter the picture another layer of mystery is added. Yes, it’s complicated. Here’s a flow chart that tries to explain the flow of information (denoted by question marks) and money (denoted by dollar signs) of design and sales relationships. See chapter 9 for a full explanation.

fixture sales


Substitutions vs Specifications

Earlier this week I had a disagreement with a contractor about my specifications and fixture schedule.  The client, who had never been involved in a construction project of this type, didn’t know which one of us to believe.  It went like this:  We are coming up on the end of construction and the contractor is slightly over budget.  In order to save money he wants to start to substitute less expensive products for those that have not yet been purchased which, in this case, includes the lighting fixtures and control system.  His problem is that my specification and fixture schedule are so clear and precise (also referred to as “tight”) that he is having a hard time finding acceptable alternates.  He told that owner that my tight specification is unfair because of this, and that I’ve essentially “given” the project to certain manufacturers “regardless of price.”  I explained that a tight specification protects the integrity of the design, and thus protects the owner, by guaranteeing that the expected design is the one that is installed.   Who is a client to believe?  Let’s go through this.

As a lighting designer I have one source of income – my fee.  I don’t get a royalty or commission from manufacturers that I specify*, I don’t sell fixtures to the project, and I don’t set pricing for fixtures.  As a result, my only incentive to specify one manufacturer over another is appropriateness for the project.  I talk to the owner about their needs and desires, budget, and timeline. I evaluate fixtures based on performance, options, accessories, quality, and price.  I run calculations to make sure that the appropriate amount of light is being delivered and that the lighting system’s power consumption is within code limits.  In some cases I’m contractually required to identify three equal fixtures for each type.  That’s a lot of work and I want to make sure that it isn’t lost or undermined, so I write a tight specification.

After all of that work, though, most projects don’t require the contractor to provide only those items that the designers have specified.  The rationale is that this gives contractors more flexibility in getting the best price, especially for public projects being paid for with tax dollars.  In practice, however, this is often not the case.  The contractor wasn’t present during the design process and doesn’t understand the criteria that went into selecting each fixture.  He (or she) is primarily concerned with price, not performance.  It’s common for the first round of substitutions offered by the contractor contain a large number of fixtures that are inappropriate for one reason or another.  If a substitute fixture will do the job I usually accept it, but I won’t accept a fixture just because it’s offered.  A tight specification sets the requirements for the fixtures and provides the basis for rejecting inappropriate substitutions.  Yes, this can constrain the contractor’s choice of substitutions but for a good reason.  There are huge variations in fixture performance, even when fixtures look the same.  I’ve had contractors (and architects) say that a downlight is a downlight is a downlight.  Take a look at the photometrics and it quickly becomes obvious that this just isn’t so.

From a designer’s perspective we protect the client by protecting the design, accepting substitutions that work but rejecting those that don’t.  A tight specification can limit the amount of back and forth with substitutions by setting strict criteria that substitutions must meet.  That’s part of the professional expertise we bring to the project.

*I admit I do sometimes get a nice box of chocolates during the holidays.