Design Guide for Color and Illumination

As the co-chair of the IES Color Committee I am delighted (pun intended) to announce the publication of the Design Guide for Color and Illumination.  The guide is the result of over five years of work by more than a dozen researchers, engineers, manufacturers, and designers from across the globe.  Here’s part of the description on the IES site.

Color can be described using concrete values such as chromaticity coordinates, spectral power distribution, or others discussed later in this guide. However, one’s response to color can be much more personal and emotional—and therefore more difficult to quantify. This guide takes the reader from basic vision and color vocabulary, through methods of measuring and quantifying color, and culminates in the practical use of commercially available white light and colored lights. The definitions, metrics, and references discussed will assist in building a critical understanding of the use and application of color in lighting.

It is probably the best, most thorough discussion of light and color available today.  Everyone interested in color, color perception, color rendering, and their relationship to light should read it.  It will be available at the IES booth at Lightfair.

Lighting For Plant Health

I have a current project with a green wall, aka living wall, and other greenery in the space. I’ve been given conflicting information about the lighting requirements I need to meet are and how to measure them, so I did some research. This isn’t definitive, but here’s what I’ve found.

First of all, the measurement units that we’re all familiar with don’t apply to horticulture because the average plant’s response to light is very different from that of the human visual system. We know that the human eye response curve is V(λ) (pronounced vee lambda) which is shown in Figure 1. Our response to electromagnetic energy falls between 380 and 770 nm, with a peak response at 555 nm. In order to measure light the way the human visual system perceived it, V(λ) is folded into the definition of the lumen, the footcandle, etc.

Figure 1 V(λ)

Plants, however, have a response curve called the photosynthesis action spectrum, shown in Figure 2. The wavelengths of light that are absorbed and used by plants are below 520 nm and above 610 nm [i], which roughly equates to the blue and red range of the visible spectrum. Plants need a great deal of red light, a far amount of blue light, and little or no green light.

photosynthetically active spectrum

Figure 2 Average photosynthesis action spectrum of chlorophyll [ii]

So, we can’t talk about the amount of light delivered to plants in a useful way if we’re using lumens and footcandles. The measurement of light for plant health is Photosynthetically Active Radiation (PAR) [iii]. There are PAR calibrated light meters, and digital tools to convert lux/footcandle readings to PAR. Other common measurements are also not relevant to horticulture.

  • Color temperature is a numerical indication of the warmth or coolness of white light, but warmth or coolness are aesthetic criteria and are not relevant in light for plant health.
  • CRI is an indicator of how well a light source allows us to see colors when compared to a reference light source. The response of the human visual system to light is built-in to the CRI calculation. Again, for plant health we are not concerned with seeing the colors of the plants so this metric is not relevant.

 

What kind of light should we provide? Incandescent light has an appropriate balance of red and blue light for plant health, as shown in Figure 3. The power consumption will be high. Fortunately, power consumed by the lighting for plant health is exempt from the energy conservation codes. However, with their short life and high power consumption incandescents are, overall, a poor choice.

Incandescent SPD

Figure 3 SPD for incandescent light of 2800 K, 3000 K, and 3200 K [iv]

High color temperature metal halide lamps have been the horticulture light source of choice for a long time because their SPD provides an appropriate balance of red and blue light (Figure 4). While metal halide lamps are being replaced by LEDs in many applications, I expect they will be available for at least the next decade. For my project, these fixtures would only to be used during the green wall’s growth period in the morning before the space opens to the public. A second set of fixtures with warmer light will be used when the space is open so that I could light the wall in a way that is in balance with the rest of the space during operating hours.

Metal Halide SPD

Figure 4 SPD for a 4200 K metal halide [v]

One of the exciting features of LEDs is that they permit fine-tuning of the emitted spectrum. With LEDs it is possible to create a light source that closely follows the photosynthesis action spectra. This has been shown to “improve factors such as yield, flavor, color, plant growth, and flowering as well as pest and pathogen management and control.”[[vi] The impact has been studied, and results so far have been positive, for leaf lettuce [vii], cucumbers [viii], and tomatoes [ix], among others. At least one study has noted, however, has “concluded that the response of plants to the applied light is individual and depends on the species,” [x]

Therefore, an alternative to metal halide fixtures is multi-colored LED fixtures. Since multi-colored LED fixtures allow users to control the brightness of each color individually one could opt for a fixture with a Red, Blue, White (RBW), a Red, Red, Blue, White (RRBW), or a Red, Blue, Blue, White (RBBW) set of LEDs. This would permit one fixture to provide light for health and accent light. One possible result of a RBW fixture is shown in Figure 5. This is a much better match to the photosynthesis action spectra than incandescent, metal halide, or white LEDs.

Figure 5 Possible RBW LED produced SPD

For the time being, the people responsible for the greenery have asked me to stay with the tried and true metal halide lamps.  In the near future, as metal halide lamps become rarer, and as LEDs become more common in horticulture, I expect we’ll be changing over to LEDs.

 

References

[i] Yingchao Xu, Yongxiao Chang, Guanyu Chen, Hongyi Lin, The Research On LED Supplementary Lighting System For Plants, Optik – International Journal for Light and Electron Optics, Volume 127, Issue 18, September 2016, Pages 7193-7201, ISSN 0030-4026, http://dx.doi.org/10.1016/j.ijleo.2016.05.056.

[ii] The Science of Food Production, http://www.bbc.co.uk/education/guides/z23ggk7/revision/2.

[iii] Torres, Ariana P., Lopez, Roberto G., Measuring Daily Light Integral in a Greenhouse, Department of Horticulture and Landscape Architecture, Purdue University, https://www.extension.purdue.edu/extmedia/ho/ho-238-w.pdf

[iv] Livingston, Jason, Designing Light: The Art, Science, and Practice of Architectural Lighting, Hoboken: John Wiley and Sons, 2014.

[v] TM-30-15 Advanced Calculator, Illuminating Engineering Society, New York: Illuminating Engineering Society, 2015.

[vi] Davis, Philip A. and Burns, Claire, Photobiology In Protected Horticulture, Food and Energy Security 2016: 5(4): 223-238. http://onlinelibrary.wiley.com/doi/10.1002/fes3.97/full

[vii] Filippos Bantis, Theoharis Ouzounis, Kalliopi Radoglou, Artificial LED Lighting Enhances Growth Characteristics And Total Phenolic Content Of Ocimum Basilicum, But Variably Affects Transplant success, Scientia Horticulturae, Volume 198, 26 January 2016, Pages 277-283, ISSN 0304-4238, http://dx.doi.org/10.1016/j.scienta.2015.11.014.

[viii] Brazaityte, A., et.al.,  The Effect Of Light-Emitting Diodes Lighting On Cucumber Transplants And After-Effect On Yield, Zemdirbyste, Volume 96, Issue 3, 2009, Pages 102-118. https://www.scopus.com/record/display.uri?eid=2-s2.0-73949144018&origin=inward&txGid=7294EF1D0E6304BAA77C73981961A69E.wsnAw8kcdt7IPYLO0V48gA%3a2 (Login Required)

[ix] Brazaityte, A., et. al., The Effect Of Light-Emitting Diodes Lighting On The Growth Of Tomato Transplants, Zemdirbyste, Volume 97, Issue 2, 2010, Pages 89-98, https://www.scopus.com/record/display.uri?eid=2-s2.0-78249276864&origin=inward&txGid=7294EF1D0E6304BAA77C73981961A69E.wsnAw8kcdt7IPYLO0V48gA%3a7 (Login Required)

[x] Fra̧szczak, B., et. al., Growth Rate Of Sweet Basil And Lemon Balm Plants Grown Under Fluorescent Lamps And Led Modules, Acta Scientiarum Polonorum, Hortorum Cultus, Volume 13, Issue 2, 2014, Pages 3-13, https://www.scopus.com/record/display.uri?eid=2-s2.0-84898647440&origin=inward&txGid=7294EF1D0E6304BAA77C73981961A69E.wsnAw8kcdt7IPYLO0V48gA%3a12 (Login Required)

How Bright Are Colored LEDs?

Measuring and describing the brightness of colored LEDs is an increasingly important part of a lighting designer’s practice. They are used more often, and in more types of projects, than ever before. Yet, we don’t have an accurate method for understanding exactly how much light is being produced and how bright it will appear. It’s a problem that the lighting industry needs to solve, and soon.

The human eye does not respond to all wavelengths of light equally. We have the greatest response to the yellow-green light of 555 nm. Our response falls off considerably in both directions.  That is, wavelengths of light do not contribute equally to our perception of brightness. The sensitivity curve of the human eye is called V(λ) (pronounced vee lambda) and is shown below.

The definition of a lumen, the measurement of brightness of a light source, is weighted using V(λ) and essentially assumes that the light source emits light across the visible spectrum – in other words, it produces a version of white light.

Light meters are calibrated to measure white light using V(λ) so that their measurement of brightness corresponds with our perception. Individual colored LEDs emit only a fraction of the visible spectrum, as shown below in the graph of V(λ) and the SPD of a red LED, and that’s the problem.

V(λ) and the SPD of a red LED.

Light meters measure the light that the colored LEDs provide, of course, and this information is included on an LED fixture manufacturer’s cut sheets, but it often makes no sense. For example, an RGBW fixture I’ve arbitrarily selected reports the following output in lumens: Red 388, Green 1,039, Blue 85, White 1,498. Since brightness is additive, the output when all LEDs are at full should be 3,010 lumens. However the Full RGBW output is given as 2,805 lumens! That’s 7% lower than what we expect.

The essential problem is that the colored LEDs give the light meter only a fraction of the spectrum it’s designed to measure. The meter provides a result based on its programming and calibration, but the results are often nonsensical or at odds with our perception. This problem doesn’t affect only architectural lighting designers. Film and TV directors of photography and lighting directors also rely on a light meter’s accurate measurement of brightness in their work, and when using colored LED fixtures the light meter is likely to be wrong. In fact, even white light LEDs can be difficult to measure accurately because of the blue spike in their SPD.

For now, the only way to accurately assess the brightness of colored LEDs is to see them in use. Lighting professionals need to let manufacturers and others know that the current situation is not acceptable, and that an accurate method of measuring and reporting the brightness of colored LEDs is a high priority. Talk to fixture and lamp sales reps, fixture and lamp manufacturers, and decision makers at IES, CIE, NIST and other research and standards setting organizations. There’s a solution out there. We need to urge those with the skills and resources to find it to get going!

IES Symposium Summary

If you missed IES Research Symposium III Light + Color you missed an exciting (for color geeks) few days. It would take too long to relate everything that was discussed, but here are some key highlights.

  • TM-30-15 is seeing broader acceptance throughout the industry. In an exciting development, it seems that the CIE is going to endorse TM-30 Rf after a few changes are made. The expectation is that the industry will then begin a rapid movement toward using Rf instead of CRI Ra, and that eventually CRI will be withdrawn. Unfortunately, the CIE is notoriously slow, so there is no timeline for their formal endorsement of TM-30. Maybe next year?
  • Manufacturers are resolving the spectral deficiencies that result from using a limited number of LEDs in both color mixing and color temperature tuning products. Their solution is to move from two and three color systems to systems using four or five independently controlled colors of LEDs.
  • Color preference was a big topic with no resolution. One complaint of both CRI and TM-30 is that they penalize light sources that deviate from the reference source even if many people prefer the deviation. Of course, Ra and Rf are both fidelity metrics, so they must penalize such deviations.   We have strong evidence that people prefer light sources that slightly increase the saturation of objects, and that people prefer light sources that include somewhat more red than the reference sources. However, because the amount of deviation that is preferred is application dependent, a single, all-purpose metric for rating color preference seems to be unattainable.

Design Is A Process, Not Just A Product

I often tell my students that design is as much a process as it is a product. Even so, they (and some of my clients) sometimes want to go from first meeting to finished design in one step. I suppose one could do that, but the result wouldn’t be a thoughtfully appropriate design, it would just be fixture selection. The difference lies in the early part of the design process where we gather information about the project and the expectations of the stakeholders, followed by an analysis of that information towards the stated goals of the project. Only after completing those two critical steps can we begin the work of putting the design together and executing it. Here’s one way of looking at the entire process.Lighing-Design-Process

Who Needs A Lighting Designer? Museums and Galleries!

A few weeks ago I gave a three-hour seminar on lighting museums and galleries to the graduate students in an art curating program at a university here in New York. Condensing everything I’d like to say into less than three hours was tough. The two big questions were what to include and what to leave out. I started with a quick overview of how to think about light and lighting before moving on to basic vocabulary and some common lighting techniques. Then, since LEDs are clearly the future, even when lighting art, I moved on to an overview of both color temperature and color rendering. I talked about reference materials such as the IES Lighting Handbook, intensity and brightness ratios, and other considerations before we moved into their gallery space to use their track light system for some demonstrations.

After the whole affair a faculty member, who sat in on most of the seminar, said he had hoped I would have spent much more time talking about how to use track lights and less time on unimportant issues like design, color temperature, and color rendering (!). I was respectful, but stunned. Focusing track lights is so complex that it requires extensive demonstrations? Understanding that with LEDs the color qualities of the light vary widely, and can only be properly selected when they are understood is unimportant information? Uhh…NO. Or, as my 20 month old niece says, “no no no no.”

Yes, five or ten years ago the default light source in museums was an incandescent or halogen lamp. The color temperature difference was minor and the color rendering of both was excellent. That’s not true today. Look at the cut sheet for any museum grade track light and you’ll see that you have a choice of several color temperatures and CRI values. If ANYONE needs to understand the qualities of light that must be selected when using LED fixtures, if anyone needs to understand the affect that color temperature and CRI have on how colors are perceived, it’s certainly people involved in displaying and lighting art. To me, that means the curators of exhibits and the lighting designers they hire.

As I’ve discussed earlier, changing the color temperature of the light changes the color appearance of objects, as shown below.

Illuminated with Warm White Fluorescent Lamp
Illuminated with 3000 K light
Illuminated with Cool White Fluorescent Lamp
Illuminated with 4000 K light

The phenomenon of color consistency means that the shift in color appearance isn’t as great as one might expect or as these photos suggest, but the shifts are real. If you’ve ever bought a black garment only to discover later that it was actually dark blue you’ve experienced this shift. A similar thing happens when we compare a high CRI light source and a low CRI light source. If your work involves color perception this is basic and critical information.

Curators can be forgiven for not knowing much about this, but if they know nothing how can they collaborate with their lighting designer to show the art as they intend? Administrators and curators of museums and galleries – educate yourselves, then hire a lighting designer!

Who Needs A Lighting Designer? Schools!

Studio T+L is the theatre consultant on the theatre in a new school here in New York. During an early meeting with the architect I explained that I prefer to have the dimming and control system for the stage lighting also control the house lighting, so I’d like to schedule a meeting with the lighting designer to talk about coordinating our work.

I wasn’t surprised (although I was disappointed) to be told that the design team for this new school building doesn’t include a lighting designer. Who’s designing the lighting in the classrooms, offices, theatre and other spaces? It’s hard to say. The plan is that one of the architect’s lighting sales representatives will present them with a choice of light fixtures, the architect will select the fixtures, and the electrical engineer will lay them out and circuit them. Unfortunately, this is an all too common approach that results in mediocre lighting, at best. Here’s why…

For starters, it’s highly unlikely that the architect has a deep enough understanding of vision, visual tasks, current fixture technology, control technology, code requirements, and the lighting design requirements of educational facilities to thoroughly evaluate the lighting needs of the school and the various types of spaces that it holds. It’s much more likely that the architect is working with a possibly outdated rule of thumb such as, “Schools should be lit to 50 fc.”   The sales rep, even if he/she is capable, isn’t going to invest any time or effort in a deeper evaluation of the school’s needs because the fixture sale (not good lighting) is the goal, so meeting the architect’s requirements is all that he/she has to do. The electrical engineer is simply implementing the architect’s instructions. He/she is given the selected fixtures and told to arrange them to provide 50 fc, and make sure to cover the code requirements.   What’s missing is any thought about how the spaces will be used and the actual needs of the occupants .

I believe that design is as much a process as it is a product.  A lighting designer would not assume that all school lighting is the same, and that as long as there’s enough light the lighting will be good enough. A lighting designer would talk to the school about their present facility, and about the good and bad aspects of the current lighting. The lighting designer may consult one or more of the available guides to quality lighting design for schools such as ANSI/IES RP-3-13 Lighting for Educational Facilities, and would look for opportunities to include daylighting as one element of the overall lighting design. A lighting designer would look at the sustainability and energy efficiency aspects of the lighting system and factor that information into the overall design. A lighting designer would take the time to understand how various types of classrooms are used, and would lay out fixtures and select controls accordingly.

I’m sure that none of this is happening on this school project.

And, not just any lighting designer will do. It behooves architects to have some understanding of the lighting needs for the building types they design to make sure the lighting designers they hire doing their job.  For example, my classes at Parsons School of Design in Manhattan are held in a building that is less than five years old.  It  that was designed by a prominent architect. However, the classroom I was in last semester had terrible lighting.  The room has two rows of direct-indirect pendant fixtures. The uplight and downlight components are controlled together, and all of the fixtures are controlled by one dimmer, so all of the lighting in the room works as one. The problem? The projection screen is bathed in light that washes out the image, and there’s no way to dim or turn off only the fixtures that affect the screen. There are lighting controls by the door, but none by the instructor’s computer station, so I find myself walking back and forth across the room to make adjustments to the light as I constantly balance my students’ need to see the screen with their need to see their notebooks. This is a rookie mistake, and any experienced designer worth his or her salt should have immediately seen the potential problem and selected fixtures, a layout, and controls to avoid it, but it didn’t happen.

So, who needs a lighting designer? Schools and the architects who design them.

Light + Color Symposium Registration is Open

Registration is now open for the IES Research Symposium III, Light + Color.  I’m on one subcommittee that’s coordinating the symposium and have sat in on organizing meetings, and I can assure you that it will be a very informative three days.  The IES describes the symposium, saying “This international lighting research and application symposium will draw on the talents and expertise of the researcher, the technologist and the design professional to better understand the growing role of color in lighting from the standpoints of color vision, color perception, color preference, color metrics and color technology.”  The symposium will be April 3-5 in Gaithersburg, MD and will include tour of the color labs at NIST.  Register here.  See you there!

NEMA Misrepresents IES TM-30

On November 12 the National Electrical Manufacturers Association (NEMA) published a position paper on IES TM-30-15. The document is here. It seems to be a willful misunderstanding and misrepresentation of TM-30. Here’s how…

The paper opens with NEMA’s support of an improved color metric but then goes on to say that “NEMA opposes any mandatory reporting or performance requirements for IES-Rf or IES-Rg.” This is a strange opening since neither the IES, in general, or TM-30, in specific, is proposing mandatory requirements. In fact, the IES’s own position paper on this states that “As with any IES Technical Memorandum, TM-30-15 is not a required standard.” So the paper begins with alarm about a non-issue.

Next, it says that, “Any single-number fidelity measure (such as Ra or the new Rf) that averages the results of many colors in a light source could possibly have a high numerical value and yet perform poorly with some specific colors.” Exactly. That’s the problem with CRI Ra, only a single number is reported. The great advantage of TM-30 is that in addition to the average fidelity value Rf, the calculation tool allows designers to see 1) the fidelity within color groups, called Hue Angle Bins, that encompass the entire color space 2) the direction of hue shift (if any) as displayed in the Color Vector Graphic, and 3) the Rf for each of the 99 Color Evaluation Samples (CES). Far from being a single value, as with Ra, TM-30 provides designers with layers of additional information about the performance of the lamp in question.

In the next paragraph we are told “The IES-Rg metric can have a value greater than 100 and yet saturation might be lower than the reference light source for certain colors.” Right again, but in a misleading way. As with color fidelity, TM-30’s evaluation of color gamut is layered. Rg represents the average shift in saturation of the 99 CES. If a specifier wants deeper information it is available in the calculation tool as 1) a CES chromaticity comparison that plots the CES under both the reference illuminant and the test source so that one can see the shift 2) a graph showing the change of chroma by Hue Angle Bin.

The entire third paragraph complains that if Rf is 100 there can be no increase or decrease in Rg – saturation is held at 100, too. This is like pointing out that the problem with taking a bath is that you get wet and soapy. The interrelation between Rf and Rg is a feature, not a bug. When the fidelity index of a light source matches it’s reference then OF COURSE they will produce the same saturation of colors. If one wants to purposely increase or decrease saturation the only way to do so is to use a light source that is NOT an exact match to the reference source, and hence one that has a lower fidelity value. The relationship between Rf and Rg are shown as a graph in the calculation tool to help designers visualize the values that the tool calculates. That’s a good thing.

Finally, the paper concludes with “It is premature to consider IES TM-30-15 as a mandatory requirement or regulation because the metrics are likely to evolve.” As I said at the beginning, this is a non-issue.

The IES developed and issued TM-30 because CRI does not consistently and accurately represent the color rendering of many light sources, especially narrow band emitters like LEDs. This issue is well known and completely accepted by the industry, including the CIE. (A list of CRI’s shortcomings is included in the latest edition of the IES Lighting Handbook.) The IES position is that TM-30 “has been developed for the benefit of the lighting community to provide: (a) a more accurate assessment of color fidelity; (b) an additional, complementary assessment of the influence of the preferred color appearance of objects (related to color gamut); and (c) more detailed information about the rendition of specific colors.“ and goes on to say that, “the issuance of TM-30-15 will enable the international lighting community to carefully evaluate it, providing a path leading to improved standards and design guidance. Technical analysis and feedback regarding the method described in TM-30 will be critical to continued development and standardization of color quality metrics.” In other words, “We think this is a good tool. We’re publishing it so that other concerned parties can evaluate it. We hope that this will trigger the acceptance of TM-30 or the development of another tool.”

Clearly NEMA as an organization, or members of their Lighting Systems Division, has a problem with the IES issuing TM-30, but the position paper is a red herring. It stirs up alarm over TM-30 becoming a requirement or regulation when the IES has noted that isn’t the purpose of a TM, and attempts to point out shortcomings that actually belong to CRI, not to TM-30. I don’t know about the politics involved here, but I do know that this paper should be read with skepticism.