How Bright Are Colored LEDs?

Measuring and describing the brightness of colored LEDs is an increasingly important part of a lighting designer’s practice. They are used more often, and in more types of projects, than ever before. Yet, we don’t have an accurate method for understanding exactly how much light is being produced and how bright it will appear. It’s a problem that the lighting industry needs to solve, and soon.

The human eye does not respond to all wavelengths of light equally. We have the greatest response to the yellow-green light of 555 nm. Our response falls off considerably in both directions.  That is, wavelengths of light do not contribute equally to our perception of brightness. The sensitivity curve of the human eye is called V(λ) (pronounced vee lambda) and is shown below.

The definition of a lumen, the measurement of brightness of a light source, is weighted using V(λ) and essentially assumes that the light source emits light across the visible spectrum – in other words, it produces a version of white light.

Light meters are calibrated to measure white light using V(λ) so that their measurement of brightness corresponds with our perception. Individual colored LEDs emit only a fraction of the visible spectrum, as shown below in the graph of V(λ) and the SPD of a red LED, and that’s the problem.

V(λ) and the SPD of a red LED.

Light meters measure the light that the colored LEDs provide, of course, and this information is included on an LED fixture manufacturer’s cut sheets, but it often makes no sense. For example, an RGBW fixture I’ve arbitrarily selected reports the following output in lumens: Red 388, Green 1,039, Blue 85, White 1,498. Since brightness is additive, the output when all LEDs are at full should be 3,010 lumens. However the Full RGBW output is given as 2,805 lumens! That’s 7% lower than what we expect.

The essential problem is that the colored LEDs give the light meter only a fraction of the spectrum it’s designed to measure. The meter provides a result based on its programming and calibration, but the results are often nonsensical or at odds with our perception. This problem doesn’t affect only architectural lighting designers. Film and TV directors of photography and lighting directors also rely on a light meter’s accurate measurement of brightness in their work, and when using colored LED fixtures the light meter is likely to be wrong. In fact, even white light LEDs can be difficult to measure accurately because of the blue spike in their SPD.

For now, the only way to accurately assess the brightness of colored LEDs is to see them in use. Lighting professionals need to let manufacturers and others know that the current situation is not acceptable, and that an accurate method of measuring and reporting the brightness of colored LEDs is a high priority. Talk to fixture and lamp sales reps, fixture and lamp manufacturers, and decision makers at IES, CIE, NIST and other research and standards setting organizations. There’s a solution out there. We need to urge those with the skills and resources to find it to get going!

DOE Predicts LED Use and Energy Savings

In September the DOE issued, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications (PDF, 116 pages), the latest edition of a biannual report which models the adoption of LEDs in the U.S. general-lighting market, along with associated energy savings, based on the full potential DOE has determined to be technically feasible over time. The new report projects that energy savings from LED lighting will top 5 quadrillion Btus (quads) annually by 2035. Among the key findings:

  • By 2035, LED lamps and luminaires are anticipated to occupy the majority of lighting installations for each of the niches examined, comprising 86% of installed stock across all categories (compared to only 6% in 2015).
  • Annual savings from LED lighting will be 5.1 quads in 2035, nearly equivalent to the total annual energy consumed by 45 million U.S. homes today, and representing a 75% reduction in energy consumption versus a no-LED scenario.
  • Most of the 5.1 quads of projected energy savings by 2035 will be attributable to two commercial lighting applications (linear and low/high-bay), one residential application (A-type), and one that crosses ­both residential and commercial (direc­tional). Connected lighting and other control technologies will be essential in achieving these savings, accounting for almost 2.3 quads of the total.
  • From 2015 to 2035, a total cumulative energy savings of 62 quads – equivalent to nearly $630 billion in avoided energy costs – is possible if the DOE SSL Program goals for LED efficacy and connected lighting are achieved.

Don’t have time for the full report?  Download the report summary.

DOE OLED Webinar Next Week

OLEDs are making inroads into the lighting marketplace but are not nearly as well understood as LEDs.  On July 28th the DOE will present a webinar on the current state and future of this lighting technology.  The DOE describes it as “This webinar will present highlights from a new DOE study that examines the state of available OLED products, and the technology and market hurdles that prevent wider use of OLEDs.”

Measuring and Reporting LED Life

I’m putting the finishing touches on a lighting design and as I look at cut sheets I continue to be disappointed that many fixture manufacturers still don’t seem to understand the proper methods of measuring and reporting LED life. For example, an Edison Price cut sheet says that lamp life is “rated 50,000 hours based on L70/B50 criteria.  LM80 report by the LED manufacturer furnished upon request,” a USAI cut sheet says that life is “Based on IESNA LM80-2008 50,000 hours at 70% lumen maintenance (L70),” and a Lighting Services Inc. cut sheet just says “Tested to LM79 and LM80 Protocols” and then gives a life of 50,000 hours. Unfortunately, these statements don’t mean what the manufacturers suggest they mean. Let’s take a look.

Back in the early days of LEDs of lighting (say around 2005!) it was the wild west in terms of manufacturers reporting product life. The rated life of traditional lamps is the amount of time that passes until one-half of a sample set has burned out. LEDs don’t burn out, they just get dimmer and dimmer over time, so many LED manufacturers estimated the amount of time until an LED’s output had fallen to one-half and called that the LED’s life. This led to reported lifetimes of over 100,000 hours, which sounds great until you realize that at 100,000 hours the space you’re lighting is only half as bright as it was at the first hour. How many of our designs provide twice as much light on day one so that we can lose 50% of the light and still provide an acceptable light level? None! Clearly the industry needed another method of calculating life.

Somehow (sorry, I don’t know the history of this) the industry settled on a loss of 30% of output as the lifetime of an LED. This is in line with the Lamp Lumen Depreciation (LLD) factor applied to many CFL and HID lamps in illuminance calculations. The lifetime to 70% of initial light output is often abbreviated as L70. Many lighting designers have pointed out that a 30% loss of light is pretty poor performance and some manufacturers have responded by providing L80, and even L90, data (that is, the life until the LED has lost 10% of its initial brightness). All of this was a step in the right direction, but there was no standard method for taking the measurements to determine L70.

In 2008 the Illuminating Engineering Society stepped up to clarify things with LM-80-08 Approved Method: Measuring Lumen Maintenance of LED Light Sources. LM-80 (LM stands for Lumen Maintenance) specifies the test conditions and methods to be used to measure and report the lumen maintenance of an LED package. Data is collected every 1,000 hours for a minimum of 6,000 hours. Even accurately collected LM-80 data isn’t ideal, though. LM-80 is used to evaluate LED packages, not entire fixtures, so the conditions of the test (temperature, electrical characteristics of the driver, etc.) may, or may not, be similar to those in the assembled and installed fixture.

Importantly, LM-80 does not provide a method of extrapolating the 6,000 hours of data to predict future performance. As a result, any cut sheet saying that a 50,000 hour life is calculated according to LM-80 is misstating things unless the manufacturer has actually had the same LED packages under test. 50,000 hours translates to nearly six years, to that’s unlikely. LM-80 was revised in 2015 and is now the ANSI standard ANSI/IES LM-80-15 IES Approved Method: Measuring Luminous Flux and Color Maintenance of LED Packages, Arrays and Modules.

How do manufacturers calculate an LED’s life? They (should) use IES TM-21-11 Projecting Long Term Lumen Maintenance of LED Light Sources. TM-21 (TM stands for Technical Memorandum) describes a method for projecting the lumen maintenance of LEDs using the data collected during LM-80 testing. So, a cut sheet should say something like, “L70 life of 50,000 hours based on LM-80 testing data according to TM-21 protocol.”

The statements I quoted at the beginning leave wiggle room for the manufacturers to provide lifetimes that may, or may not, be calculated according to TM-21. TM-21 is the only standard we have that allows us to compare apples to apples, so omitting a statement about using TM-21 as the basis of lifetime calculation should make you suspicious about the reported life. It’s also important to understand that LM-80 is a testing procedure, and TM-21 is a calculation procedure. They are not tests. There’s no such thing as an LED that “passes” LM-80 or TM-21 (as some reps have tried to tell me). LM-80 and TM-21 produce information about the life of an LED that the designer uses to assess the appropriateness of a fixture.

Specifiers need to tell reps and manufacturers that LED life must be calculated according to TM-21. It’s the only way to be sure that the lifetimes of various fixtures are all calculated the same way so that we can make reasonable comparisons. They should also urge the IES to develop a procedure that tests a complete fixture: housing, power supply, and LEDs. That’s going to be the best estimate of the true life of an LED fixture. Yes it will take time, but we need accurate information that is calculated the same way across all manufacturers.

IALD Responds To DOE Energy Conservation Program

As I posted in March, the Emerging Technologies Program of the DOE’s Building Technologies Office asked for pubic comments on extending the minimum efficacy of incandescent lamps used in general illumination applications, specifically:

  1. Incandescent lamps that currently do not have a suitable replacement lamp meeting or exceeding 45 lumens per watt (lm/W).
  2. Gaps in technology that impede (or would likely impede) the design, development and future sale lamps of greater than or equal to 45 lm/W.

On May 13th the IALD published their response. The broad outline of their comments are that, first, the proposed rule to increase efficacy to a minimum of 45 lm/W is almost irrelevant because “the market is already addressing the issue of energy savings from lighting.” They go on to note that according to a recent Commercial Buildings Energy Consumption Survey, the use of electricity for lighting fell by 46% between 2003 and 2012.   Second, there is little to be gained by requiring an increased efficacy for lamps that do not currently have a minimum due to the relatively low numbers of lamps involved. Third, the available technologies (primarily LEDs) do not adapt well to certain lamp types and exhibit a range of problems with dimming.

I support the IALD’s response. Quite frankly, with the low LPDs that are written into the various energy conservation codes, we’re already designing under very tight power budgets. The DOE’s proposal will have no effect on decreasing power consumption because it lags so far behind Standard 90.1 and the IECC.

MIT Creates Incandescent Lamp As Efficient as LEDs

Researchers at MIT and Purdue University have demonstrated an incandescent lamp with an efficacy of 6.6 percent, and with a potential efficacy as high as 40 percent. The paper was published in the April issue of Nature Nanotechnology. The demonstration compares favorably to current low efficacy fluorescent and LED lamps, while the upper limit is double the current maximum efficacy for fluorescents and LEDs.

The lamp uses a flat filament, rather than the coil of typical incandescent lamps, that is held between two plates of glass with a coating similar to a dichroic reflector, which the researchers call a photonic crystal. The plates permit visible light to pass through them, but reflect the infrared light back to the filament further heating it and producing more light. This idea has been with us for a while now, with most major lamp manufacturers producing some version of an IR halogen lamp. The main difference is that the new dichroic-like coating is much more efficient than the coatings currently in use and works at a much wider range of wavelengths and angles.

This is great news for those of us who haven’t bought into the idea that LEDs will make everyone happy, make all of our children above average, and help the country win the war. Between the low LPDs of the current versions of Standard 90.1 and other energy conservation codes, and the high efficacy of LEDs, most of us are compelled to use LEDs as the primary light source in many of our projects whether we want to or not. LEDs are great, but they’re not the best design choice for every application. As my students and readers of my book know, I regard energy efficiency as an important consideration in any lighting design, but not the primary goal. My first goal is to understand and deliver the desired look and feel of the space I’m lighting while providing appropriate light levels. My second goal is to explore the possible techniques and technologies that I can use to achieve my first goal. My third goal is to use the most energy efficient option from among the best options.

As a designer whose primary concern is the quality of the living/working/shopping environment I’m helping to create, I want to have as many tools at my disposal as possible, not just LEDs. At this point, it seems that lamp and fixture manufacturers are fully embracing the LED with very little attention paid to other light sources, with the possible exception of the OLED. If this experimental lamp becomes commercialized, we’d be able to use inexpensive, tried-and-true dimming technologies that deliver the performance we want without any of the problems associated with fluorescents and LEDs (flickering, flashing, dimming curves that are too flat or too steep, inability to dim smoothly to 0%, high cost, etc.).

This lamp wouldn’t be a solution for all lighting situations of course, in the same way that the LED isn’t a solution for all situations, but it would allow us to have true incandescent light in any application that called for it without running afoul of energy conservation codes.

DOE Seeks Information On High Efficiency General Service Lamps

The Emerging Technologies (ET) Program of the United States Department of Energy Building Technologies Office is seeking information from the public on incandescent lamps in general illumination applications.

The ET Program supports applied research and development for technologies and systems that contribute to reductions in building energy consumption and helps to enable cost-effective, energy-efficient technologies to be developed and introduced into the marketplace. The following are key areas of interest:

1. Incandescent lamps that currently do not have a suitable replacement lamp meeting or exceeding 45 lumens per watt (lm/W).
2. Gaps in technology that impede (or would likely impede) the design, development and future sale of greater than or equal to 45 lm/W replacement lighting products

You can download the Request For Information here.

GE To Stop Manufacturing CFLs By End Of 2016

In another example of LEDs growing dominance in the lighting industry, General Electric has announced that it is “breaking up” with CFL lamps, and that it will stop manufacturing and sales of spiral retrofit lamps in the U.S. by the end of this year.    According GE, CFLs and LEDs each accounted for about 15 percent of lamps sales last year.  The sales of LEDs are increasing and sales of CFLs are decreasing.

Who Needs A Lighting Designer? Museums and Galleries!

A few weeks ago I gave a three-hour seminar on lighting museums and galleries to the graduate students in an art curating program at a university here in New York. Condensing everything I’d like to say into less than three hours was tough. The two big questions were what to include and what to leave out. I started with a quick overview of how to think about light and lighting before moving on to basic vocabulary and some common lighting techniques. Then, since LEDs are clearly the future, even when lighting art, I moved on to an overview of both color temperature and color rendering. I talked about reference materials such as the IES Lighting Handbook, intensity and brightness ratios, and other considerations before we moved into their gallery space to use their track light system for some demonstrations.

After the whole affair a faculty member, who sat in on most of the seminar, said he had hoped I would have spent much more time talking about how to use track lights and less time on unimportant issues like design, color temperature, and color rendering (!). I was respectful, but stunned. Focusing track lights is so complex that it requires extensive demonstrations? Understanding that with LEDs the color qualities of the light vary widely, and can only be properly selected when they are understood is unimportant information? Uhh…NO. Or, as my 20 month old niece says, “no no no no.”

Yes, five or ten years ago the default light source in museums was an incandescent or halogen lamp. The color temperature difference was minor and the color rendering of both was excellent. That’s not true today. Look at the cut sheet for any museum grade track light and you’ll see that you have a choice of several color temperatures and CRI values. If ANYONE needs to understand the qualities of light that must be selected when using LED fixtures, if anyone needs to understand the affect that color temperature and CRI have on how colors are perceived, it’s certainly people involved in displaying and lighting art. To me, that means the curators of exhibits and the lighting designers they hire.

As I’ve discussed earlier, changing the color temperature of the light changes the color appearance of objects, as shown below.

Illuminated with Warm White Fluorescent Lamp
Illuminated with 3000 K light
Illuminated with Cool White Fluorescent Lamp
Illuminated with 4000 K light

The phenomenon of color consistency means that the shift in color appearance isn’t as great as one might expect or as these photos suggest, but the shifts are real. If you’ve ever bought a black garment only to discover later that it was actually dark blue you’ve experienced this shift. A similar thing happens when we compare a high CRI light source and a low CRI light source. If your work involves color perception this is basic and critical information.

Curators can be forgiven for not knowing much about this, but if they know nothing how can they collaborate with their lighting designer to show the art as they intend? Administrators and curators of museums and galleries – educate yourselves, then hire a lighting designer!