You may remember that in June of last year the American Medical Association (AMA) released a report called “Human and Environmental Effects of Light Emitting Diode (LED) Community Lighting.” The report made some noise in the general press because it supported the idea that blue light from blue-pump white LEDs contribute to disability glare and retinal damage.
In the lighting community there was a considerable amount of frustration and anger over the report for several reasons. First, there were quite a few references cited that were either hearsay, such as a New York Times article about Brooklyn residents who didn’t like their new LED street lights, or were irrelevant, such as several articles about the effect of skyglow on nesting turtles. The other reason was that there was not a single lighting designer or researcher on the panel. Overall, it was a poorly researched paper that didn’t deserve the attention it received.
Shortly after it was issued, the Lighting Research Center at RPI issued a response paper. On March 15 the authors of that paper held a webinar to further address the AMA report. A video of that webinar is now available. If you’ve got an hour, take a look.
The key takeaways regarding the hazard of blue light from LEDs and the report are:
- The criteria of blue light hazard for retinal damage is much more than just color temperature, and includes the source size, intensity per unit area on the retina, and SPD of the light source.
- Disability glare is not a function of light source SPD, as the AMA paper suggests, although discomfort glare is. Short wavelengths increase discomfort glare.
- Color temperature is the wrong measurement to determine whether or not a light source will affect the circadian system and melatonin production because color temperature does not provide complete SPD information. For example, some 3,000 K LEDs can have a greater impact than 4,000 K LEDs.
- The criteria of blue light hazard for circadian disruption from a light source include – the intensity, duration of exposure, timing of exposure, and SPD.